前列腺癌差异表达基因的分析及其miRNA和lncRNA的预测Analysis of Differentiall Expressed Genes Related to Prostate Cancer and Corresponding miRNA and LncRNA of Genes
宋咏刚,余鹏,胡文慧,石玉玲,赵雪,胡祖权,王赟,曾柱
SONG Yonggang,YU Peng,HU Wenhui,SHI Yuling,ZHAO Xue,HU Zhuquan,WANG Yun,ZENG Zhu
摘要(Abstract):
目的:筛选前列腺癌的差异表达基因及其上下游的调控分子。方法:通过TCGA数据库和GEO数据库,经RSudio软件分析得到差异基因(DEGenes);采用STRING工具构建差异基因的相互作用网络、CYTOSCAPE软件筛选核心模块,并对差异基因进行GO和KEGG分析,运用mirDIP数据库预测核心基因的miRNA,登录STARBASE对miRNA进行生存分析并预测其lncRNA。结果:筛选出前列腺癌的差异表达基因共137个,GO分析结果显示有23个富集结果,KEGG分析有20个通路被富集;对7个核心差异基因进行分析,预测出2个与总体生存率相关的miRNA,这些miRNA有4个对应的lncRNA;最后构建lncRNA-mRNA互作网络。结论:从生物信息学角度对前列腺癌的差异基因进行筛选和分析,筛选出前列腺癌发生过程中的关键基因及其上下游的调控分子。
Objective: To identify differentially expressed genes(DEGenes) in prostate cancer and the related regulation molecules within their upstream and downstream.Methods: Through TCGA and GEO databases, DEGenes were obtained from the analysis of RStudio software. An interaction network of DEGenes was constructed through STRING tool and CYTOSCAPE software to screen the core module and then carry out GO and KEGG analysis of DEGenes. The mirDIP database and STARBASE database were applied to predict miRNA and lncRNA of the core genes.Results: 137 DEGenes of prostate cancer were screened. 23 enrichment results were collected by GO analysis and 20 signaling pathways were enriched by KEGG analysis. After analysis of seven core DEGenes, two miRNAs which were related to the overall survival in prostate cancer patients and four corresponding lncRNAs were predicted. Finally an interaction network of lncRNA to mRNA was built.Conclusions: The study screens and analyzes DEGenes related to prostate cancer from the perspective of bioinformatics.Regulation molecules of upstream and downstream corresponding to the core genes are screened and predicted. It may provide a theoretical evidence for exploring potential biomarkers in the diagnosis and treatment of prostate cancer.
关键词(KeyWords):
前列腺肿瘤;基因表达调控;miRNA;计算生物学;lncRNA
prostatic neoplasms;gene expression regulation;miRNA;computational biology;lncRNA
基金项目(Foundation): 国家自然科学基金(11762006,31771014,31660258,31860262);; 贵州省自然科学基金资助项目[黔科合基础(2018)1412];; 黔科合平台人才[(2016)5676],黔科合平台人才[(2017)5718];; 黔科合人才团队[(2015)4021];; 2011协同创新中心[黔教合协同创新字(2015)04];; 贵州省细胞与基因工程创新群体[黔教合KY字(2016)031]
作者(Author):
宋咏刚,余鹏,胡文慧,石玉玲,赵雪,胡祖权,王赟,曾柱
SONG Yonggang,YU Peng,HU Wenhui,SHI Yuling,ZHAO Xue,HU Zhuquan,WANG Yun,ZENG Zhu
DOI: 10.19367/j.cnki.1000-2707.2020.02.007
参考文献(References):
- [1] TAN J, JIANG X, YIN G, et al. Anacardic acid induces cell apoptosis of prostatic cancer through autophagy by ER stress/DAPK3/AKt signaling pathway[J]. Oncol Rep,2017, 38(3):1373-1382.
- [2] KESSLER B, ALBERTSEN P. The natural history of prostate cancer[J]. Urol Clin North Am, 2003, 30(2):219-226.
- [3] SIVARAMAN A, BHAT K. Screeing and detection of prostate cancer-review of literature and current perspective[J]. Indian J Surg Oncol, 2017, 8(2):160-168.
- [4] GU J, REN L, WANG X, et al. Expression of livin, survivin and caspase-3 in prostatic cancer and their clinical significance[J]. Int J Clin Exp Pathol, 2015, 8(11):140344-140349.
- [5] JINDAY V. Immunotherapy:a glimmer of hope for metastatic prostate cancer[J]. Chin Clin Oncol, 2018, 7(6):61-71.
- [6] RITCHIE M E, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7):e472015.
- [7] YANG H, WU J, ZHANG J, et al. Integrated bioinformatics analysis of key genes involved in progress of colon cancer[J]. Mol Genet Genomic Med, 2019, 7(4):e588.
- [8] ZHANG S, CAO R, LI Q. Comprehensive analysis of lncRNA-associated competing endogenous RNA network in tongue squamous cell carcinoma[J]. Peer J, 2019,7:e6397.
- [9] WANG Y, FAN H, ZHANG L. Biological information analysis of differentially expressed genes in oral squamous cell carcinoma tissues in GEO database[J]. J BUON,2018, 23(6):1662-1670.
- [10]INOUE T, HAGIYAMA M, ENOKI E, et al. Cell adhesion molecule 1 is a new osteoblastic cell adhesion molecule and a diagnostic marker for osteosarcoma[J]. Life Sci, 2013, 92(1):91-99.
- [11]蒙富雪,董蓉,吴翠芳,等.未成熟树突状细胞与成熟树突状细胞的细胞骨架调控相关基因表达的差异分析[J].基因组学与应用生物学,2018,37(7):3252-3261.
- [12]GENG R X, LI N, XU Y, et al. Identification of core biomarkers associated with outcome in glioma:evidence from bioinformatics analysis[J]. Dis Markers, 2018, 14(11):e0224922.
- [13]LI P, WU M, LIN Q, et al. Key genes and integrated modules in hematopoietic differentiation of human embryonic stem cells:a comprehensive bioinformatic analysis[J]. Stem Cell Res Ther, 2018, 9(1):301-310.
- [14]SHIRDEL E A, XIE W, MAK T W, et al. NAViGaTing the micronome-using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs[J]. PLOS ONE, 2011, 6(2):e17429.
- [15]ZHONG L, LIU Y, WANG K, et al. Biomarkers:paving stones on the road towards the personalized precision medicine for oral squampus cell carcinoma[J]. BMC Cancer, 2018, 18(1):911-930.
- [16]TU X, QIU S, CHANG T, et al. The role of real-time elastography-targeted biopsy in the detection and diagnosis of prostate cancer:A systematic review and meta-analysis[J]. Medicine, 2018, 97(12):e0220.
- [17]RAJAN P, STOCKLRY J, SUDBERY I M, et al. Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre-and post-treatment prostatic biopsies from patients with advanced prostate cancer[J]. BMC Cancer, 2014, 14(1):977-986.
- [18]SHA J, XUE W, DONG B, et al. PRKAR2B plays an oncogenic role in the castration-resistant prostate cancer[J]. Oncotarget, 2016, 8(4):6114-6129.
- [19]LING Z, WANG X, TAO T, et al. Involvement of aberrantly activated HOTAIR/EZH2/miR-193a feedback loop in progression of prostate cancer[J]. J Exp Clin Cancer Res, 2017, 36(1):159-173.
- [20]MENG F, SAXENA S,LIU Y, et al. The phospho-caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration[J].Mol Biol Cell, 2017, 28(16):2190-2201.
- [21]PACE G, MASSIMO C D, AMICIS D D, et al. Inflammation and endothelial activation in benign prostatic hyperplasia and prostate cancer[J]. Int Braz J Urol, 2011,37(5):617-622.
- [22]THORSEN K, SORENSEN K D, BREMS-ESKILDSEN A S, et al. Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis[J]. Mol Cell Proteomics, 2008, 7(7):1214-1224.
- [23]KOWALSKI M P, KRUDE T. Functional roles of noncoding Y RNAs[J]. Int J Biochem Cell Biol, 2015, 66:20-29.
- [24]ZEYBEK A, OZ N, KALEMCI S, et al. Diagnostic value of mir-125b as a potential biomarker for stage I lung adenocarcinoma lung Adenocarcinoma[J]. Curr Mol Med, 2019, 19(3):216-227.
- [25]WU F, MO Q, WAN X, et al. NEAT1/has-mir-98-5p/MAPK6 axis is involved in non-small-cell lung cancer(NSCLC)development[J]. J Cell Biochem, 2019, 120(3):2836-2846.
- [26]CHEN X, XIONG D, YE L, et al. Atractylenolide II reverses the influence of lncRNA XIST/miRNA-30a-5p/ROR1 axis on chemo-resistance of colorectal cancer cells[J]. J Cell Mol Med, 2019, 23(5):3151-3165.
- [27] RUIJUAN Z, ZHIJUN W,QIANYUN Y, et al. KCNQ1OT1/miR-217/ZEB1 feedback loop facilitates cell migration and epithelial-mesenchymal transition in colorectal cancer[J]. Cancer Biol Ther, 2019, 20(6):886-896.
- [28]罗振国,李淑奎,陶然,等.检测尿液中的USP9YTTTY15RNA对前列腺癌的早期诊断[J].黑龙江医药科学,2017, 40(3):30-31,34.
文章评论(Comment):
|
||||||||||||||||||
|
- 前列腺肿瘤
- 基因表达调控
- miRNA
- 计算生物学
- lncRNA
prostatic neoplasms - gene expression regulation
- miRNA
- computational biology
- lncRNA