巨噬细胞与单核细胞的细胞骨架调控相关的差异基因表达Differential Gene Expression Associated with Regulation of Cytoskeleton of Macrophages and Monocytes
宋咏刚,胡文慧,余鹏,石玉玲,赵雪,胡祖权,王赟,曾柱
SONG Yonggang,HU Wenhui,YU Peng,SHI Yuling,ZHAO Xue,HU Zhuquan,WANG Yun,ZENG Zhu
摘要(Abstract):
目的:分析单核细胞(Mo)向巨噬细胞(Mφ)分化的过程中,细胞骨架的调控相关基因及信号通路的表达变化。方法:CEO数据库获得Mo和Mφ的芯片数据,经RStudio软件分析获得差异表达基因(DEGenes),利用STRING在线工具对DEGenes构建蛋白质相互作用网络(PPI),Cytoscap软件筛选出DEGenes的核心模块;对筛选出的DEGenes的核心模块进行GO和KEGG分析。结果:Mφ相对于Mo的差异表达基因共476个,主要涉及的信号通路包括NOD样受体信号通路和吞噬体信号通路,这些通路中CCL18、CXCL8和C3等相关基因与细胞骨架的调控密切相关。结论:Mo向Mφ分化过程中细胞骨架调控相关基因的表达发生了显著改变。
Objective: To analyze the expression of genes and signal pathways related to the regulation of cytoskeleton During the differentiation of monocyte(Mo) into macrophage(Mφ). Methods: The chip data of Mo and Mφ were obtained from CEO database, and the different expression genes(DEGenes)were obtained by RStudio software analysis.The core module of the DEGenes was selected by using the STRING online tool to construct the protein interaction network(PPI) and the Cytscap software. The core modules of DEGenes for GO and KEGG were analyzed. Results: A total of 476 genes were expressed in Mφ relative to Mo. The main signal pathway involved the signal pathway of NOD-like receptor and the signal pathway of the phagocytic body. The related genes such as CCL18, CXCL8 and C3 in these pathways were closely related to the regulation of cytoskeleton. Conclusion: The expression of genes related to the regulation of cytoskeleton in the differentiation of Mo into Mφ changes significantly.
关键词(KeyWords):
巨噬细胞;单核细胞;细胞骨架;生物信息学;基因芯片
macrophage;monocyte;cytoskeleton;bioinformatics;gene chip
基金项目(Foundation): 国家自然科学基金(11762006,31771014,31660258,31860262);; 贵州省自然科学基金资助项目[黔科合基础(2018)1412],[黔(科合平台人才(2016)5676],[黔科合人才团队(2015)4021],[黔科合平台人才(2017)5718];; 2011协同创新中心[黔教合协同创新字(2015)04];; 贵州省细胞与基因工程创新群体[黔教合KY字(2016)031]
作者(Author):
宋咏刚,胡文慧,余鹏,石玉玲,赵雪,胡祖权,王赟,曾柱
SONG Yonggang,HU Wenhui,YU Peng,SHI Yuling,ZHAO Xue,HU Zhuquan,WANG Yun,ZENG Zhu
DOI: 10.19367/j.cnki.1000-2707.2019.12.004
参考文献(References):
- [1] PHAM L V,POGUE E,FORD R J.The role of macrophage/b-cell interactions in the pathophysiology of B-cell lymphomas[J].Fron Oncol,2018,8:147.
- [2] RUYTINX P,PROOST P,VAN D J,et al.Chemokine-induced macrophage polarization in inflammatory conditions[J].Front Immunol,2018,9:1930.
- [3] VOGEL D Y,HEIJNEN P D,BREUR M,et al.Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation[J].J Neuroinflammation,2014,11:23.
- [4] YANG H,WU J,ZHANG J,et al.Integrated bioinformatics analysis of key genes involved in progress of colon cancer[J].Mol Genet Genomic Med,2019,11:e588.
- [5] 蒙富雪,董蓉,吴翠芳,等.未成熟树突状细胞与成熟树突状细胞的细胞骨架调控相关基因表达的差异分析[J].基因组学与应用生物学,2018,37(7):3252-3261.
- [6] GENG R X,LI N,XU Y,et al.Identification of core biomarkers associated with outcome in glioma:Evidence from bioinformatics analysis[J].Dis Markers,2018,2018:3215958.
- [7] LI P,WU M,LIN Q,et al.Key genes and integrated modules in hematopoietic differentiation of human embryonic stem cells:a comprehensive bioinformatic analysis[J].Stem Cell Res Ther,2018,9(1):301.
- [8] BERMICK J,SCHALLER M,CARSON W.Histone methylation is critical in monocyte to macrophage differentiation[J].FEBS J,2017,284(9):1306-1308.
- [9] OSTARECK D H,OSTARECK L A.RNA-binding proteins in the control of LPS-induced nacrophage response[J].Front Genet,2019,10:31.
- [10]RUEESLL D G,VANDERVEN B C,GLENNIE S,et al.The macrophage marches on its phagosome:dynamic assays of phagosome function[J].Nat Rev Immunol,2009,9(8):594-600.
- [11]ASMIS R.Monocytes and macrophages:a fresh look at functional and phenotypic diversity[J].Antioxid Redox Signal,2016,25(14):756-757.
- [12]KAMRANVAR S A,GUPTA D K,HUANG Y,et al.Integrin signaling via FAK-Src controls cytokinetic abscission by decelerating PLK1 degradation and subsequent recruitment of CEP55 at the midbody[J].Oncotarget,2016,7(21):30820-30830.
- [13]WAGNER W,SAFFRICH R,WIRKNER U,et al.Hematopoietic progenitor cells and cellular microenvironment:behavioral and molecular changes upon interaction[J].Stem Cells,2005,23(8):1180-1191.
- [14]JANJANAM J,CHANDAKA G K,KOTLA S,et al.PLCβ3 mediates cortactin interaction with WAVE2 in MCP1-induced actin polymerization and cell migrat[J].Mol Biol Cell,2015,26(25):4589-4606.
- [15]LIEPELT A,MOSSANEN J C,DENECKE B,et al.Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation[J].RNA,2014,20(6):899-911.
- [16]LIN Z,LI W,ZHANG H,et al.CCL18/PITPNM3 enhances migration,invasion,and EMT through the NF-κB signaling pathway in hepatocellular carcinoma[J].Tumour Biol,2016,37(3):3461-3468.
- [17]VACCHINI A,MORTIER A,PROOST P,et al.Differential effects of posttranslational modifications of CXCL8/Interleukin-8 on CXCR1 and CXCR2 internalization and signaling properties[J].Int J Mol Sci,2018,19(12):3768-3785.
- [18]SHI F,WANG Y C,HU Z B,et al.Simulated microgravity promotes angiogenesis through RhoA-dependent rearrangement of the actin cytoskeleton[J].Cell Physiol Biochem,2017,41(1):227-238.
- [19]MITCHELL J S,BROWN W S,WOODSIDE D G,et al.Clustering T cell GM1 lipid rafts increases cellular resistance to shear on fibronectin through changes in integrin affinity and cytoskeletal dynamics[J].Immunol Cell Biol,2009,87(4):324-336.
- [20]KEESTRAGOUNDER A M,TSOLIS R M.NOD1 and NOD2:beyond peptidoglycan sensing[J].Trends Immunol,2017,38(10):758–767.
- [21]BIAN H,LI F,WANG W,et al.MAPK/p38 regulation of cytoskeleton rearrangement accelerates induction of macrophage activation by TLR4,but not TLR3[J].Int J Mol Med,2017,40(5):1495-1503.
- [22]OJEDA V,CASTROCASTRO A,BUSTELO X R.Coronin1 proteins dictate rac1 intracellular dynamics and cytoskeletal output[J].Mol Cell Biol,2014,34(18):3388-3406.
文章评论(Comment):
|
||||||||||||||||||
|