自体脂肪基质细胞组织-脱细胞骨基质-壳聚糖支架对兔胫骨骨缺损修复作用Experimental Study of SVF Cells Combined with Acellular Bone Matrix Chitosan Scaffold in Repairing Rabbit Tibial Bone Defect
杨鹏,邵擎东,李宇飞,严旭,江峰,吕峰霞,韦苏
YANG Peng,SHAO Qingdong,LI Yufei,YAN Xu,JIANG Feng,LU Fengxia,WEI Su
摘要(Abstract):
目的:探究自体脂肪基质细胞组织(SVF)联合脱细胞骨基质-壳聚糖支架修复兔胫骨缺损的效果。方法:取新西兰兔背部皮下脂肪制备获取SVF细胞、取股骨干制备获取脱细胞骨基质,将SVF细胞种植于脱细胞骨基质-壳聚糖支架上,于种植当日及种植第7天时,扫描电镜观察支架上SVF细胞生长情况,计算种植当日及种植第3天时的SVF细胞存活率;将20只兔胫骨缺损动物模型均分为研究组和对照组,研究组用SVF-脱细胞骨基质-壳聚糖支架修复,对照组用脱细胞骨基质-壳聚糖支架修复;于术后6及12周时检测2组胫骨缺损部位的骨密度,并进行X线拍照,于术后12周时检测2组骨缺损部位最大弯曲度负荷、抗弯钢度及破坏扰度的力学特征,检测缺损骨骨膜中血管内皮细胞生长因子(VEGF)和表皮生长因子(EGF)水平。结果:电镜结果显示,SVF细胞种植第7天,支架上黏附大量的SVF细胞,并且SVF细胞在支架表面上生长、增殖;SVF种植当日的SVF细胞存活率为100.0%,种植第3天SVF细胞的存活率为(98.54±1.83)%,2者比较差异无统计学意义(P>0.05);术后第6及12周时,研究组新西兰兔骨缺损处的支架材料和周围骨组织之间的界限模糊,周围骨组织有骨茄形成;2组新西兰兔术后第12周时骨缺损部位骨密度均高于同组术后第6周,研究组术后同时点的骨缺损部位骨密度均高于对照组,差异有统计学意义(P<0.05);术后第12周时,研究组新西兰兔最大弯曲度负荷和抗弯钢度大于对照组,破坏扰度低于对照组,差异有统计学意义(P<0.05);术后第12周时,研究组新西兰兔骨缺损部位骨膜中的VEGF和EGF蛋白水平均高于对照组,差异有统计学意义(P<0.05)。结论:SVF-脱细胞骨基质-壳聚糖支架可促进兔胫骨骨缺损修复,可能机制与SVF促进骨膜内的血管新生有关。
Objective: To explore the effect of SVF cells combined with acellular bone matrix chitosan scaffold(ABMCS) on repairing rabbit tibial bone defect. Methods: SVF cells were seeded on ABMCS. 20 tibial defect models of rabbits were equally divided into the study group and the control group. The study group was treated with SVF combined with ABMCS, while the control group was treated with ABMCS only. SVF was seeded on ABMCS and 7~(th) days later and was scanned by electron microscope. The SVF cells survival rate was calculated at the 0 day and the 3~(rd) day.Bone mineral density(BMD) of tibia defect was detected by bone densitometer in the 6~(th) week and 12~(th) week postoperatively. In the 12~(th) week after operation, the biomechanical parameters of bone defects were detected, vascular endothelial growth factor(VEGF) and epidermal growth factor(EGF) in periosteum were detected. Results: In the 7~(th) day after inoculation of ABMCS, SVF cells adhered to a large number of SVF cells, and SVF cells grew and proliferated on the scaffold surface. The survival rate of SVF cells on day 0 after SVF inoculation was 100.0%. After three days of culture, the survival rate of SVF cells was(98.54+1.83) %. The difference was not significant.(P>0.05). In the study group, the boundary between bone defect scaffold and surrounding bone tissues began to become blurred 6 and 12 weeks after operation. The bone mineral density of the bone defect in the study group and the control group was significantly higher in the 6~(th) week than in the 12~(th) week after operation, and the bone density of the bone defect in 6~(th) and 12~(th) week after the operation was significantly higher in the study group than that in the control group(P<0.05). The expression levels of VEGF and EGF in the periosteum of bone defect in the study group were significantly higher than those in the control group(P<0.05) at 12~(th) week. Conclusions: The use of SVF-ABMCS to repair bone defect of tibia in rabbits has significant effect. SVF can not only differentiate into osteoblasts but also promote angiogenesis in the periosteum.
关键词(KeyWords):
SVF细胞;脱细胞骨基质;壳聚糖;兔;胫骨缺损;血管内皮细胞生长因子类;表皮生长因子
SVF cells;acellular bone matrix scaffold(ABMCS);chitosan;rabbit;tibial defects;vascular endothelial growth factors;epidermal growth factor
基金项目(Foundation): 全军医药卫生科研项目(14ZD09)
作者(Author):
杨鹏,邵擎东,李宇飞,严旭,江峰,吕峰霞,韦苏
YANG Peng,SHAO Qingdong,LI Yufei,YAN Xu,JIANG Feng,LU Fengxia,WEI Su
DOI: 10.19367/j.cnki.1000-2707.2020.01.006
参考文献(References):
- [1] 林嘉宜,袁伟壮,张洪武.医用3D打印材料应用于骨缺损修复的研究进展[J].中国临床解剖学杂志,2017,35(6):708-712.
- [2] 段宁,张文韬,程辉光,等.仿生双相陶瓷生物活性骨应用于节段性骨缺损修复[J].中国组织工程研究,2015,19(25):3952-3956.
- [3] 韩操,马宁,李忠义,等.自体骨髓间充质干细胞载体复合物修复骨缺损的组织学观察[J].中国组织工程研究,2015,19(6):891-897.
- [4] 樊奇,郑丹宁,余力,等.SVF细胞影响移植脂肪LPL表达的实验研究[J].组织工程与重建外科杂志,2015,11(3):148-151.
- [5] 周峰,李强,黄理旭,等.基质血管成分细胞与脂肪来源干细胞在全厚皮片移植中的作用比较[J].中国美容整形外科杂志,2019,30(8):491-494,499.
- [6] 冯春朝,卢沛伶,黄婧,等.改良推注方法制备脂肪移植SVF胶的实验研究[J].中国美容整形外科杂志,2019,30(6):338-341.
- [7] 原博,陆树良.脂肪组织中血管基质部分(SVF)的细胞成分及应用[J].组织工程与重建外科杂志,2007,(1):55-56.
- [8] 李宁远,龚亚莉,刘煊文,等.不同材料人工髋关节假体对骨界面应力分布及生物力学的影响[J].中国组织工程研究,2016,20(9):1268-1274.
- [9] 杜辉,付勤.同种异体骨移植与自体骨移植修复四肢粉碎性骨折:骨性愈合及骨活性比较[J].中国组织工程研究,2015,19(8):1206-1210.
- [10]李凯,樊欣.脂肪组织来源干细胞调控血管生成的研究进展[J].西南医科大学学报,2019,42(5):493-497.
- [11]LI X F,XU H,ZHAO Y J,et al.Icariin augments bone formation and reverses the phen-otypes of osteoprotegerin-deficient mice through the activation of Wnt/β-Catenin-BMP signaling[J].Evid Based Complement Alternat Med,2013,2013:652317.
- [12]孙思捷.脂肪血管基质组分获取方法及临床应用的研究进展[J].组织工程与重建外科杂志,2018,14(6):353-356.
- [13]SAGAR N,PANDEY A K,GURBANI D,et al.In-vivo efficacy of compliant 3D nano-composite in critical-size bone defect repair:a six month preclinical study in rabbit[J].PLoS One,2013,8(10):e77578.
- [14]黄皎,于湄,田卫东.脂肪组织血管基质成分在组织工程化脂肪构建中的应用[J].国际口腔医学杂志,2016,43(1):74-78.
- [15]CARVALHO P P,LEONOR I B,SMITH B J,et al.Undiffererntiated human adipose-derived stromal/stem cells loaded onto wet-spun starch-polycaprolactone scaffolds enhance bone regeneration:nude mice calvarial defect in video study[J].J Biomed Mater Res A,2014,102(9):3102-3111.
- [16]侯崇超,周传德.SVF-gel联合自体颗粒脂肪在外生殖器整形中的临床应用[J].中国美容整形外科杂志,2019,30(3):179-181.
- [17]KOH Y G,KWON O R,KIM Y S,et al.Comparative outcomes ofopen-Wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchy mal stem cell treatment:a prospective study [J] .Arthroscopy,2014,30 (11):1453-1460.
- [18]樊奇,郑丹宁,余力,等.SVF细胞影响移植脂肪LPL表达的实验研究[J].组织工程与重建外科,2015,11(3):148-151.
- [19]黄桢雅,陈俊男,赖琳英,等.不同冻存时间对脂肪组织生物学活性的影响[J].中国美容医学,2019,28(2):14-17.
- [20]张丽丽,艾红军,郑石磊.浓缩生长因子对兔骨膜细胞增殖与成血管化的影响[J].解剖科学进展,2017,23(4):385-389.
- [21]胡强,韩岩.脂肪组织中纳米脂肪与基质血管成分的对比研究[J].中国美容整形外科杂志,2019,30(6):331-335.
- [22]蔡德南,陈斐,王木盛.脐带间充质干细胞移植对烧伤患者新生肉芽组织EGF及VEGF表达的影响[J].广东医学,2018,39(5):740-744.
- [23]蒯权,王宜梅,李聪,等.SVF-gel促进糖尿病鼠创面愈合的初步实验研究[J].组织工程与重建外科杂志,2019,15(1):13-16.
- [24]汪正财,顾子春,李奕润,等.基质血管片段促进脂肪移植后再血管化的机制研究进展[J].组织工程与重建外科杂志,2017,13(6):349-353.
- [25]殷雅婷,张爱君,王浩,等.自体脂肪来源基质血管组分辅助脂肪移植改善面部皮肤质量[J].中国组织工程研究,2019,23(9):1428-1433.
文章评论(Comment):
|
||||||||||||||||||
|
- SVF细胞
- 脱细胞骨基质
- 壳聚糖
- 兔
- 胫骨缺损
- 血管内皮细胞生长因子类
- 表皮生长因子
SVF cells - acellular bone matrix scaffold(ABMCS)
- chitosan
- rabbit
- tibial defects
- vascular endothelial growth factors
- epidermal growth factor