贵州医科大学学报

2020, v.45;No.233(02) 237-243

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

血液生化指标主成分回归模型用于脑梗死患者CISS分型
Principal Component Regression Model of Blood Biochemical Index for CISS Classification of Cerebral Infarction Patients

潘能毅;武志全;林树楷;陆茂葳;唐美秀;
PAN Nengyi;WU Zhiquan;LIN Shukai;LU Maowei;TANG Meixiu;The Third People's Hospital of Hainan;Changsha Medical University;

摘要(Abstract):

目的:探讨血液生化指标主成分回归模型用于脑梗死患者疾病分型(CISS分型)的可能。方法:将280例脑梗死患者参照《中国缺血性卒中分型诊断》均分为大动脉粥样硬化组(LAA组)、心源性卒中组(CS组)、穿支动脉疾病组(PAD组)、其他病因组(OE组)及病因不确定组(UE组),检测5组患者外周血低密度脂蛋白(LDL)、高密度脂蛋白(HDL)、总胆固醇(TC)、淀粉蛋白(SAA)、环亲素A(CyPA)、人血浆脂蛋白相关磷脂酶A2(Lp-PLA2)、人类软骨糖蛋白(YKL-40)、白介素6(IL-6)、C反应蛋白(CRP)、肿瘤坏死因子(TNF-α)、超氧化物歧化酶(SOD)、8羟基脱氧鸟苷酸(8-OHdG)、丙二醛(MDA)、胰岛素样生长因子1(IGF-1)、神经元特异性烯醇化酶(NSE)、脑源性神经营养因子(BDNF)、纤维蛋白原(FIB)、一氧化氮(NO)、基质金属蛋白酶9(MMP-9)及肽素(CP)水平共20项生化指标;对上述生化指标进行降维,获取影响疾病分型的主成分,以患者CISS分型为因变量,以影响的主成分评分为自变量,拟合回归方程分析主成分对脑梗死患者CISS分型的综合影响。结果:5组患者外周血20项生化指标含量比较,差异均有统计学意义(P<0001);对20项指标进行主成分分析,提取4个主成分为主成分1(应激和炎症,贡献率34597%)、主成分2(蛋白神经毒性,贡献率20412%)、主成分3(神经营养,贡献率18558%)及主成分4(血脂状况,贡献率15602%),累积贡献率89169%;回归分析显示,4项主成分影响大小依次为应激和炎症(OR=4591,95%CI为1208~17440)、蛋白神经毒性(OR=4158,95%CI为1518~11387)、神经营养(OR=3959,95%CI为1313~11935)、血脂状况(OR=3622,95%CI为1277~10275)。结论:不同CISS分型的脑梗死患者其多项临床生化指标均有特征性表达,影响患者疾病分型的主要因素为高应激和炎症水平、毒性蛋白浸润神经、神经营养相关物质缺乏及血脂含量异常。
Objective: To investigate the possibility of using blood biochemical index principal component regression mode to evaluate classification of cerebral infarction patients.Methods: 280 cases of confirmed cerebral infarction patients(CISS type) was grouping according toClassification Diagnosis of Ischemic Stroke in China) for the patient group(LAA group, the CS group, PAD, OE group, UE group); 20 biochemical indicators were tested: LDL, HDL, TC, SAA, CyPA, Lp PLA2,YKL 40, IL-6, CRP, TNF alpha, SOD, 8-OHdG, MDA, IGF 1, NSE, BDNF, FIB, MMP-9, and CP levels. Dimensionality reduction was performed on previous mentioned indexes, and several principal components affecting disease classification were obtained. Taking CISS typing of cerebral infarction patients as the dependent variable and principal component score as the independent variable, fitting regression equation was used to analyze the comprehensive influence of principal component on CISS typing of cerebral infarction patients.Result: The differences of 20 biochemical index of peripheral blood in five groups were statistically significant(P< 0. 001). Principal components analysis was performed on 20 index, and four principal components were principal component 1(stress and inflammation, contributing rate 34.597%); principal component 2(protein neurotoxicity, contribution rate 20.412%); principal component 3(neuronutrition, contribution rate18.558%); principal component 4(blood lipid status, contribution rate 15. 602%), cumulative contribution rate as 89. 169%. According to the regression analysis discovered that the effects of the four principal components in descending order was: stress and inflammation(OR= 4.591, 95% CI between 1.208 ~17. 440), protein neurotoxicity(OR= 4.158,95% CIbetween 1. 518 ~ 11. 387),neuronutrition(OR= 3.959, 95% CIbetween 1. 313 ~ 11. 935), and blood lipid status(OR= 3.622, 95% CIbetween 1. 277 ~ 10. 275).Conclusions: A number of clinical biochemical indicators were expressed in patients with different CISS types of cerebral infarction, and the main factors affecting the disease classification of patients are high stress and inflammation level, toxic protein infiltrating nerve, lack of neuronutrition-related substances, and abnormal blood lipid content.

关键词(KeyWords): 梗塞,大脑中动脉;主成分分析;回归分析;CISS分型;生化指标;应激状态;炎症反应
infarction middle cerebral artery;principal component analysis;regression analysis;CISS parting;biochemical indexes;stress state;inflammatory response

Abstract:

Keywords:

基金项目(Foundation): 三亚市医疗科技创新项目(2017yw03);; 湖南省教育厅项目(17C1592)

作者(Author): 潘能毅;武志全;林树楷;陆茂葳;唐美秀;
PAN Nengyi;WU Zhiquan;LIN Shukai;LU Maowei;TANG Meixiu;The Third People's Hospital of Hainan;Changsha Medical University;

Email:

DOI: 10.19367/j.cnki.1000-2707.2020.02.022

参考文献(References):

文章评论(Comment):

序号(No.) 时间(Time) 反馈人(User) 邮箱(Email) 标题(Title) 内容(Content)
反馈人(User) 邮箱地址(Email)
反馈标题(Title)
反馈内容(Content)
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享